

Mission Assurance in the New Business Environment Advanced Quality Systems

Mission Assurance Up-Front & Built-In

Vol. 1.3

NASA Office of Safety & Mission Assurance

What are Advanced Quality Systems (AQS)?

AQS represent the use of systems engineering, quality engineering, business and management practices in a coordinated and integrated way. The Japanese pioneered this concept in the 1950's as "Lean" business principles & practices. The individual pieces have been around forever, ... their integrated use is the novelty, and key to success.

Advanced Quality Objectives Include: Improved safety and mission success, reduced production cost, increased efficiency, decreased cycle-time, less waste, less rework, and fewer engineering changes.

Key Concepts of Advanced Quality

Integrated Product & Process Development Team Approach

Use of IPPTs is considered an essential component of an Advanced Quality System (AQS).

Key Characteristics

Identification of key product and process design features, which must be controlled.

Robust Product Design

Reduction in number of key characteristics and failure modes.

Metrics, Measurement & Analysis

Extensive use of *statistical process control* is considered essential to characterize *process stability* (*Cp*) and *capability* (*Cpk*). Appropriate Quality metrics and Quality participation in the *incentive fee* determination.

Robust Process Design

Continual process improvement including use of *Design of Experiments* and variation control techniques, such as *process fail-safing (Poke-Yoke)*.

Costs of Quality

Identification of *Quality Prevention*, *Appraisal*, *and Failure* costs will assist in better business decisions.

Supplier Flowdown

Supplier implementation of AQS.

AQS In Design & Development

- Identify Key Product Characteristics (KPC)
- Minimize Key Product Characteristics
- Identify KPC critical tolerances
- Conduct design for assembly/design for manufacturing analyses
- Conduct product Failure Modes and Effects Criticality Analysis (FMECA)
- Develop critical failure mode mitigation strategies
- Conduct geometric dimensioning and tolerance analyses

Design & Development AQS Metrics

- Percentage of drawings for which key characteristics have been identified
- Percentage of key characteristics for which control methods have been identified
- Average number of key characteristics per drawing
- Part complexity indices
- Percentage of critical failure modes among all failure modes (product and process FMECA)
- Percentage of drawings for which Geometric Dimensioning and Tolerancing (GD&T) has been employed

AOS in Manufacturing

- Identify critical (key) processes
- Identify key control characteristics
- Conduct process stability & capability analyses
- Conduct process FMECA
- Establish process baseline metrics
- Conduct reproducibility studies
- Conduct repeatability studies

- Conduct gauge and metrology calibration and repeatability studies
- Formally validate tooling and processes
- Establish process monitoring and feedback systems as appropriate
- Implement process fail-safing (adaptive machine control or Poka-Yoke)
- Implement closed-loop, root-cause corrective action
- Implement supplier AQS programs and establish electronic data sharing arrangements

Manufacturing AQS Metrics (continued)

- Process capability indices Cp and Cpk
- Percentage of key processes with Cpk values at 1.33 or higher
- Percentage of key processes with process fail-safing controls implemented
- Failure (e.g., scrap, rework, and repair) costs as a percentage of total quality costs (prevention + appraisal + failure) or as a percentage of sales or direct labor costs
- Number of nonconformances
- Number of open nonconformances
- Average disposition time per nonconformance
- Percentage of suppliers who are ISO 9000 and/or advanced quality certification
- Percentage of nonconformances attributable to suppliers

For more information call:
Steve Newman (202) 358-1408 snewman@cc.hq.nasa.gov
Larry Shaw (713) 483-2173 lshaw@gp101.jsc.nasa.gov
John Maristch (301) 286-9900 jmaristch@pop300.gsfc.nasa.gov
or use our web page at http://www.hq.nasa.gov/office/codeq/aqshp/